ICEPO: the ion channel electrophysiology ontology
نویسندگان
چکیده
Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site:ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use.
منابع مشابه
Ion Channel ElectroPhysiology Ontology (ICEPO) – a case study of text mining assisted ontology development
BACKGROUND Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitativ...
متن کاملDoes Atrial Fibrillation Follow Function? Ion Channel Mutations and Lone Atrial Fibrillation.
متن کامل
Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening
The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry's need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and...
متن کاملThe human corneal endothelium: new insights into electrophysiology and ion channels.
The corneal endothelium is a monolayer that mediates the flux of solutes and water across the posterior corneal surface. Thereby, it plays an essential role to maintain the transparency of the cornea. Unlike the epithelium, the human endothelium is an amitotic cell layer with a critical cell density and the risk of corneal decompensation. The number of endothelial cells subsequently decreases w...
متن کاملMicrostructured glass chip for ion-channel electrophysiology.
We present a technique by which it is possible to produce a planar sensor for ion channel electrophysiology from glass substrates. Apertures with diameters in the low micrometer to submicrometer range are achieved by irradiation of a glass chip with a single heavy ion and subsequent wet track etching. The function of the device is demonstrated by recordings of single channel currents mediated b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Database : the journal of biological databases and curation
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016